A class of stochastic weighted variational inequalities in non-pivot Hilbert spaces is proposed. Existence and continuity results are proved. These theoretical results play a prominent role in order to introduce a new weighted transportation model with uncertainty. Moreover, they allow to establish the equivalence between the random weighted equilibrium principle and a suitable stochastic weighted variational inequality. At the end, a numerical model is discussed.

Stochastic weighted variational inequalities in non-pivot Hilbert spaces with applications to a transportation model / Annamaria, Barbagallo; Scilla, Giovanni. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 457:(2018), pp. 1118-1134. [10.1016/j.jmaa.2017.07.067]

Stochastic weighted variational inequalities in non-pivot Hilbert spaces with applications to a transportation model

SCILLA, GIOVANNI
2018

Abstract

A class of stochastic weighted variational inequalities in non-pivot Hilbert spaces is proposed. Existence and continuity results are proved. These theoretical results play a prominent role in order to introduce a new weighted transportation model with uncertainty. Moreover, they allow to establish the equivalence between the random weighted equilibrium principle and a suitable stochastic weighted variational inequality. At the end, a numerical model is discussed.
2018
Non-pivot Hilbert spaces; stochastic weighted variational; inequalities; existence; stochastic continuity; traffic problem
01 Pubblicazione su rivista::01a Articolo in rivista
Stochastic weighted variational inequalities in non-pivot Hilbert spaces with applications to a transportation model / Annamaria, Barbagallo; Scilla, Giovanni. - In: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS. - ISSN 0022-247X. - 457:(2018), pp. 1118-1134. [10.1016/j.jmaa.2017.07.067]
File allegati a questo prodotto
File Dimensione Formato  
Barbagallo_Stochastic_2018.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Creative commons
Dimensione 378.48 kB
Formato Adobe PDF
378.48 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1550232
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact